

# **Detector Systems for MODS**

**Bruce Atwood** 

Imaging Sciences Laboratory
Ohio State University



#### What it Does

- Operate Detector
- Deliver Rectified Image
- Some Calibration Functions
- Ability to time exposure



## System Goals

- Detector Limited Performance
  - Now
  - And forever
- Flexible Operating Modes
  - Nod and Shuffle
  - Frame transfer
  - Region of Interest
  - Skipper Amplifiers
  - +?



## Configuration

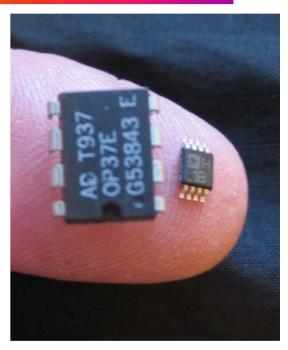
#### Based on existing (and successful) architecture

- Data taking computer with sequencer (ex IC) in warm room
- Symmetric, dedicated, and fast fiber link to telescope focus
- Single package with detector electronics (ex HE)
- No (or limited) cold/vacuum electronics





### Possible New Features 1


- Cryo Tigers vs. LN<sub>2</sub>, go tigers
  - Operationally attractive
  - Smaller and Lighter
- Cryo Tigers vs. LN<sub>2</sub>, wet is good
  - Simpler vacuum system
  - Lower initial cost
  - Known technology



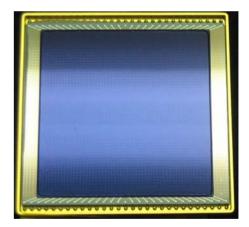


#### possible New Features 2

- Multiple (32?) Parallel preamps
  - Gain grows like N, noise like root N
  - Fully differential structure
  - Naturally provides a range of gains
- Transformer coupling
  - Better impedance match
  - Easy conversion to differential mode






#### possible New Features 3

- Separate integrators for signal and base line to allow better reset
- Separate integrators for two (or more) gains
- Separate ADCs (16 bit?) for each integrator
- Local digital subtraction and scaling to form 18 to 20 bit result



## **Detector Options**

- We have 4k x 4k Lesser devices for MODS 1
- We will entertain proposals for ~8k x ~3k devices (excellent choice for Blue, OK for Red)
  - Bredthhauer + Dalsa + Lesser
  - E2V
  - ?
- Possible Red enhancements
  - Thicker epi material (30 to 40μ)
  - High Resistivity, fully depleted LBNL design
  - Low fringing E2V design

