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Collapsed Objects.

Galaxy is populated with
collapsed, self-gravitating
objects.

Broad range of masses:

- Asteroids (0.02% Earth or 1%
Moon)

- Planets (6% Earth to 103 Earth or

10X Jupiter)

- Brown Dwarfs (~13X to 75X

Jupiter)

- Stars (7% Sun to 100X Sun)
Broad range of
compositions (Fe/O/Si/
Mg to H/He).

Range of isolation.

How do these objects
form?




Formation Theories.

e Gravitational
Collapse.

e Disk Fragmentation.
(Disk: top down)

e Agglomeration and
Core Accretion.
(Disk: bottom up)




Gravitational Collapse.

Matthew Bate l ETER

Free-fall time < sound crossing time j> collapse




Disk Instability.

(Meru & Bate 2012)
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Agglomeration and Core
Accretion.




Backstory. Before 199S...
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Backstory. Before 199S...




Jupiter

Saturn




Terrestrial (' Rocky’)
Planets.

Venus




Gas/Ice Giants.




Kuiper Belt
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Why does our
solar system

look like
this?




A Fairy Tale.




Bottom-Up Planet
Formation.

Must understand the physical processes by which
micron-sized grains in protoplanetary disks grow by

10~13-14 in size and 10~38-41 in mass.

Hard!




Bottom-Up Planet Formation.

(e.g., Lissauer 1987; Ida & Lin 2004, 2005)




The Snow Line.
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for Ice

Rocky Cores
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Core Accretion.
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(Pollack et al. 1996)




Terrestrial Plane
Formation.
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Matched Data Well.




Implications.

Consequences of this formation

model:
Compositional gradient in the types of planets.
Massive, gas—-giant planets beyond the “snow

ine”.
_Low-mass, rocky planets interior to the "snow

”

ine".
Cannot form gas—-giant planets very close to
the star.

Low-mass stars cannot form gas giants easily.




‘:-4 - N ..

1995: A Planetary Companion to 51 Peg
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Planet formation is really hard!

Additional physics, e.qg.,

e Migration.
Influence of host star mass, metallicity
Dynamical interactions.

ides.

Disk properties.

Other models! (e.g., disk instability)

Etc.




Meanwhile...




Strange New Worlds.
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Detection methods.

Doppler Shift

due to Stellar Wobble Maximum Doppler

Transits

- Microlensing
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Strange New Worlds.
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Strange New Worlds.
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Strange New Worlds.
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Strange New Worlds.
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Strange New Worlds.
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Strange New Worlds.
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Strange New Worlds.
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Strange New Worlds.
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Semi-analytic planet formation.

Population Synthesis

(Mordasani et al
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To the snow line... and beyond!
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Understanding

Habitability.




Water, water,
everywhere.

e For in situ i i
formation, material ﬁjf[j_[,; l T
that accreted to -{-

. %ff{z
form rocky planets WIIII

in the habitable |
zone was likely dry. " s“v""f?“"s‘%féi“
e Water was likely ‘ o

delivered from the
outer solar system.




Outer and Inner Regions Coupled.

e Giant planets likely formed
first.

e Presence (or not) and
properties of outer gas
giants can effect
- Terrestrial planet formation
- Water delivery

e Migration of gas giants
through terrestrial can
result in small planets in
the habitable zone.

(Raymond et al. 2006, Mandell et al. 2007)




Why Microlensing is Important.

Planets beyond the snow line.
- Most sensitive at ~few x a,, .

- Where most planets likely form, where gas giants likely form, source
of water.

- Jupiter/Saturn analogs.

Long-period and
- 0.5AU -

Very low-mass planets.
- >10% Mars.

- Low-luminosity or dark lenses.

Wide range of host masses.

- BD, M<Mg,,, remnants
- Typically 0.5 Mg,

- 1-8 kpc
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Physical Properties.

Host:
Mass = 0.51 +/- 0.05 M
Luminosity ~5% Lg,,
Distance = 1510 +/- 120 pc

Planet b:
Mass = 0.73 +/- 0.06 M,
Semimajor Axis = 2.3 +/- 0.5 AU

Sun

Planet c:
Mass = 0.27 +/- 0.02 M, = 0.90 Mg,
Semimajor Axis = 4.6 +/- 1.5 AU

AQO Imaging
from Keck




~10 M._,,,, Planet.
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Failed Jupiter Core?

Planet mass =104 «1.7M___,

Jupiter
Oinit = 10 g/cm?
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(Pollack et al. 1996) (Borucki et al. 2011)




A Massive M Dwarf Planet.
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Demographics Beyond the Snow Line:
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An Inconvenient Truth.
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1995: First Bona Fide Brown Dwartfs.

e

(Nakajima et al. 1995)




Brown Dwarfs.

Direct Imaging Surveys:

e Young clusters.

e Near-IR field surveys.

e Wide companions to stars.
Indirect Surveys:

e Radial velocity.

e [ransits.




Brown Dwarfs
Formation Scenarios.

Proposed models:

e Direct collapse and fragmentation:
- Low-mass end of star formation?

- Truncated growth?
e Irradiation.
e Ejection.

e Disk Fragmentation.
o Core accretion.

Tests: Mass function, Binary properties, Disks.




“lsolated” Brown Dwarfs.
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Dwarf Companions.

Stellar
Companions
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Microlensing Tight Brown
Dwarf Binaries.
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Isolated Brown Dwarfs.
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Free Floating Planets.

e Excess of short time
scale events relative
to expected stellar/
brown dwarf
contribution.

e Unbound or wide-
separation planets.

e Implies roughly 2
Jupiter-mass free-
floating planets per
star.

(Sumi et al. 2011; MOA + OGLE Collaborations)




Summary.

Planet formation is hard!

The demographics of planets beyond the snow
line provides crucial constraints on planet
formation theories.

Understanding habitability likely requires a broad
picture of exoplanet demographics.

Microlensing is crucial component of our arsenal
of planet detection methods.

Microlensing results (many by MicroFUN!) have
already provided important (and surprising) new
information about planets.

High-magnification events play an important role
by providing qualitatively different information.







Requirements.

Monitor hundreds of millions of bulge
stars continuously on a time scale ot ~10
minutes.

- Event rate ~10->/year/star.

- Detection probability ~0.1-1%.

- Shortest features are ~30 minutes.

Relative photometry of a few %.

- Deviations are few - 10%.

Main sequence source stars for smallest
planets.

Resolve background stars for primary
mass determinations.




What sets the lower mass Iimit?

e The finite size of the sources sets the ultimate
lower mass limit for detection.

e The source crossing time sets the minimum
required cadence of ~10 minutes.

e Small sources allow the detection of smaller
planets
- Late type stars - fainter, IR.

e Source size more important for closer planets.




Ground versus Space.

Infrared.

- More photons.

- More extincted fields.
- Smaller sources.

Resolution.
- Low-magnification events.
- Isolate light from the lens star.

Visibility. -
- Complete coverage. The field of microlensing event
Smaller systematics. MACHO 96-BLG-5

- Better characterization. (Bennett & Rhie 2002)

- Robust quantification of
sensitivities.

Science potentially enabled from space: sub-Earth
mass planets, habitable zone planets(?), free-floating
Earth-mass planets, host star characterization.




Habitable Planets?

e Habitable zone is well
interior to the Einstein ring
radius for most lenses.
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Minor image perturbations.

More sensitive to source
size.

Require better precision.

Can be made up by more

time through the “x” (Park et al. 2006)
factor.

stellar mass (M)




Potential/Proposed Space
Missions.

e Microlensing Planet Finder (Bennett)
- Dedicated Near-IR Microlensing Mission.
- Submitted to NASA as a Discovery proposal, turned down.
- Submitted as a white paper to Decadal Survey.

e Wide-Field InfraRed Survey Telescope.

- Creation of Decadal survey.

- Combined MPF, JDEM-Omega, other NIR wide-
field missions (following a suggestion by Gould).

- Several versions: IDRM (1.5m), DRM1 (1.3m),
DRM2 (1.1m).

e AFTA-WFIRST.
- NRO donated two 2.4m telescopes to NASA.




Yields.

e Yields determined by:
- Total number of stars monitored (FOV, aperture).
- Photon rate (Aperture, wavelength).
- Total observing time.
- Matthew Penny.

Primary hardware dependencies:

- FOV.
Aperture.
Bandpass (total throughput + red cutoff).
Resolution (background).
Pointing constraints.

e Secondary hardware dependencies:
- Data downlink.
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Space Discovery Potential.

e With Kepler, “completes the
census” of planets.

e Sensitivity to all Solar
System-analogs except
Mercury.

e Some sensitivity to massive,
“outer” habitable zone
(Mars-like orbits).

e Free-floating planets down
to ~Mars mass.

« WFIRST DRM1 estimated T R )
yields: i ..jﬁ: 2 :' < WFIRST
- Roughly 2200 bound planets PRI | A e Wl
(0.1-40 AU)

- 250 < 3xEarth, 1000 <
30xEarth

- Roughly 30 free-floating
Earths Semimajor Axis/Snow Line
e Euclid is less capable per

unit time. (Green et al, WFIRST Final Report)

@RV A Transits (Cr.) ’E:;?:{ O ulensing @ Imaging }{ Timing

, lrd nsits
(Ground)

Sm;w Line




Euclid.
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Politics.

e Microlensing is not part of Euclid’s core
science.

- Degradation of CCDs means it won’t happen
early in the mission, if it happens at all.

e NASA does not get a new ‘large start’
until JWST is launched.

- ‘Punishment’ for JWST cost overruns.
e WFIRST is not very popular amongst many
US astronomers.

- They see it as a ‘dark energy’ mission, along
with LSST.




Summary.

e Space-based surveys enable
qgualitatively new, exciting science:

- Sub-Earth-mass planets.

- Low-mass free-floating planets.
- Quter habitable zone planets.

- Mass measurements.

e Unclear if/when one will happen.




Planet Search Synergy!

O RV A Transits (Gr.) ‘ﬁ:;(l’:{ © ulensing [ Imaging »{ Timing

llllll I llllllll ) LILLLL I llllllll 1

Snow Line

1 IIIIIIII
1 llIlIIlI 1 lIIIIIII 1 lIlIIIII 1 IlIlIIII | IIIIIIII

=L IIIIIIII

0.01 0.1 1 10
Semimajor Axis/Snow Line




Planet Search Synergy!
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Planet Search Synergy!
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Planet Search Synergy!
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Planet Search Synergy!
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Planet Search Synergy!
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Planet Search Synergy!
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Planet Search Synergy!

O RV A Transits (Gr.) ‘ﬁ:;?:{ © ulensing [ Imaging »{ Timing

I" - SO SRR
L d .

LI lllllll U lllllll LI I"l"}'l;'alnsftsl LBLILAL

0.01 lIIlIlI | IIIIIIII 1 11 111 1 ||||||||
0.01 0.1 1 10

Semimajor Axis/Snow Line




Microlensing.




Microlensing Basics.
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Rings and Images.
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Microlensing Events.
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e Timescales of a few
to hundreds of
days.

Stochastic
Degenerate
combination of the
mass, distance to
lens and source,
and relative lens-
source proper
motion.
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Detecting Planets.
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Microlensing is directly
sensitive to planet mass.

: I‘,/]Yesi = Works by perturbing
2 B images
2,

M Does not require

/—_ light from the lens

: or planet.

Sensitive to planets
throughout the
Galaxy (distances of
1-8 kpc)
Sensitive to wide or

free-floating
planets

Not sensitive to very
close planets
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Mass ratio dependence.

e Magnitude depends on
separation of planet
from image.

e Duration depends on
mass ratio.
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e Detection probability
depends on mass ratio.
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Signal magnitude is independent of planet mass ratio, but signals get rarer and briefer.




Lower Mass Limit.
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_ Event Detection
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(Bennett & Rhie 1996)
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Detecting low-mass planets
requires monitoring main-
sequence sources.

Mars-mass planets detectable!




Microlensing Host Stars?

Sensitive to planets
around:

e Main-sequence stars with
M < IVISun

e Brown dwarfs
e Remnants

Faint Lenses:

e Most lenses are fainter
than (and blended with)
the sources.

e Lenses distributed along
the line of sight
(Gould 2000) (distances of 1-8 kpc)




What do we measure?

e For nearly all events™:
- mass ratio
- projected separation in Einstein ring radius.
*Need to measure primary event properties.

e For most low-mass planet detections (and a large
subset of higher-mass detections)
- Einstein ring radius through finite source effects.
- Gives a relationship between mass and distance of lens.

e Finally measure mass through a number of ways:
- Isolate flux from the lens
- Measure microlens parallax

- Both give different relationship between mass and
distance
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